Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C324D6

Direct product G=N×Q with N=C2 and Q=C2×C324D6
dρLabelID
C22×C324D648C2^2xC3^2:4D6432,769


Non-split extensions G=N.Q with N=C2 and Q=C2×C324D6
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C324D6) = C4×C324D6central extension (φ=1)484C2.1(C2xC3^2:4D6)432,690
C2.2(C2×C324D6) = C2×C339(C2×C4)central extension (φ=1)48C2.2(C2xC3^2:4D6)432,692
C2.3(C2×C324D6) = C3⋊S34Dic6central stem extension (φ=1)484C2.3(C2xC3^2:4D6)432,687
C2.4(C2×C324D6) = C12⋊S312S3central stem extension (φ=1)484C2.4(C2xC3^2:4D6)432,688
C2.5(C2×C324D6) = C12.95S32central stem extension (φ=1)484C2.5(C2xC3^2:4D6)432,689
C2.6(C2×C324D6) = C123S32central stem extension (φ=1)484C2.6(C2xC3^2:4D6)432,691
C2.7(C2×C324D6) = C62.96D6central stem extension (φ=1)244C2.7(C2xC3^2:4D6)432,693
C2.8(C2×C324D6) = C2×C339D4central stem extension (φ=1)48C2.8(C2xC3^2:4D6)432,694
C2.9(C2×C324D6) = C2×C335Q8central stem extension (φ=1)48C2.9(C2xC3^2:4D6)432,695
C2.10(C2×C324D6) = C6224D6central stem extension (φ=1)244C2.10(C2xC3^2:4D6)432,696

׿
×
𝔽